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 Chapitre 22 : Filtres numériques   

 

I. Introduction  

       Actuellement, la technologie de l'information numérique s'étend à tous les secteurs. Le développement de technologies 

programmables, telles que les microprocesseurs et les microcontrôleurs, simplifie des fonctions autrefois complexes, tout en 

offrant des vitesses incroyablement rapides et une précision exceptionnelle. La technologie numérique présente les 

avantages suivants : 

o Immunité au bruit : un signal codé numériquement reste insensible au bruit lors de son traitement. 

o Flexibilité : le traitement numérique peut être facilement ajusté ou reconfiguré en cours d'utilisation. 

o Mémorisation : la possibilité de stocker un signal facilite la création de délais et, par conséquent, d'une grande 

variété de filtres ou d'opérations de corrélation. 

 

 

 

 

 

      Le filtrage numérique est une opération utilisée pour traiter un signal numérique. Cette opération repose sur des calculs 

mathématiques qui se traduisent par une équation récurrente. Cette équation est ensuite implémentée dans un processeur 

de traitement de signal, tel qu'un microprocesseur (uP), un microcontrôleur (uC), un DSP (Digital Signal Processor), ou 

encore un FPGA (Field-Programmable Gate Array). 

II. Architecture d’un système numérique 

      L'architecture d'un système numérique intègre des composants essentiels comme le processeur, la mémoire, les interfaces 

d'entrée/sortie, et les bus de communication, coordonnés pour exécuter des tâches spécifiques, souvent programmables et 

optimisées pour la vitesse et l'efficacité. 

 

 

 

 

 

1. Microprocesseur 

    Un microprocesseur est un circuit intégré sophistiqué, considéré comme le cerveau 

d'un système, qui assure les fonctions principales suivantes : 

 Exécution des programmes et gestion de l'adressage. 

 Gestion de la communication entre la mémoire et les 

interfaces d'entrée/sortie. 

 Réalisation d'opérations arithmétiques et logiques.  

2. Mémoire  

Les mémoires sont des éléments essentiels des systèmes numériques. Ce sont des composants 

capables de stocker des informations (données) sous forme binaire et de les restituer.  

RAM ROM 

DYNAMIQUE STATIQUE PROM 
MASQUE 

FUSIBLE EEPROM UVPROM OTP 

Mémoire  Microprocesseur  Interfaces entrée/sortie  

Bus d’adresses  

Bus de données   

Bus de contrôle   
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 RAM : Il s'agit de mémoires volatiles, c'est-à-dire que leur contenu est perdu lorsque l'alimentation est coupée. 

 ROM : Il s'agit de mémoires non volatiles, ce qui signifie qu'elles conservent les informations stockées même après une 

coupure de l'alimentation. 

 
3. Interfaces d’entrée/sortie 

Elles permettent à l'unité centrale d'interagir avec l'environnement extérieur. On distingue deux types : 

 Interfaces parallèles : elles permettent le transfert des données de manière parallèle. 

 Interfaces série : elles permettent le transfert des données bit par bit, de manière séquentielle. 

 
4. Bus de communication  

Un système programmable minimum comporte trois types de bus : 

 Bus de données : un bus bidirectionnel utilisé pour transférer les données entre le processeur et les autres 

composants du système, dans les deux sens. 

 Bus d'adresses : un bus unidirectionnel permettant au processeur de sélectionner l'élément avec lequel il souhaite 

communiquer. 

 Bus de contrôle : un bus qui transporte les signaux de commande et de synchronisation, permettant de gérer et 

coordonner les différentes opérations entre les composants du système. 

 

III. Classification des systèmes numériques programmables  

Le tableau ci-dessous présente deux principales familles de systèmes numériques programmables : 

Circuits logiques programmables Processeurs programmables 

PAL GAL CPLD FPGA ASIC Microcontrôleur DSP  ARM  

 

1. Circuits logiques programmables  

Toute équation logique à n variables peut être exprimée sous forme de somme de produits. Pour implémenter ces équations, 

les circuits logiques programmables sont conçus avec une structure comprenant : 

o Un réseau de portes AND, organisé en matrice, pour effectuer les opérations de produit. 

o Un réseau de portes OR, également organisé en matrice, pour effectuer les opérations de somme. 

 

 

 

 

 

ASIC (Application Specific Integrated Circuit) : configurés lors de leur fabrication pour une 

application spécifique. 

 

2. Processeurs programmables : microcontrôleur - DSP 

En intégrant un microprocesseur et l’ensemble des éléments d’un système minimal 

mémoires et interfaces d’entrée/sortie, on construit ce que l’on appelle un microcontrôleur.  

Un microcontrôleur rassemble sur le même circuit tous les éléments d’un système 

programmable minimum (et plus)  

 

 

 

 

Structure interne PAL  Carte FPGA de XILINX  Carte FPGA d’ALTERA  

Carte PIC 
16F877A  

Carte ARDUINO 
ATmega328P 

Carte DSP 
TMS28F335 
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IV. Etude et analyse des filtres numériques 

1. Présentation  

     Les filtres numériques couvrent un large éventail de domaines, remplaçant souvent les filtres analogiques. Aujourd'hui, il 

est préférable de convertir ces filtres analogiques en numériques pour bénéficier de leur flexibilité et précision. La méthode 

de transposition (Adopté dans ce cours), qui consiste à adapter un filtre analogique en version numérique, est couramment 

utilisée pour ce processus.  

 

 

 

 

 

 

 

 

   Après la limite du spectre du signal d'entrée e(t) à la fréquence de Shannon-Nyquist Fe/2, les signaux des différents blocs 

du filtre numérique sont illustrés dans la figure suivante : 

 

 

 

 

 

 

 

 

 

2. Avantages et inconvénients des filtres numériques  

 Avantage Inconvénient 
Insensibilité au bruit, à l'humidité, et à la dégradation des composants au fil du temps.   
Conception de filtres d'ordre très élevé.   
Temps de conception long, entraînant des coûts élevés.   
Génération de bruit numérique nécessitant un filtrage passe-bas analogique en sortie.   
Besoin d'un système de calcul puissant pour assurer une rapidité de traitement.   

 

3. Présentation mathématique d’un filtre numérique  

Un filtre numérique est un système discret défini par une équation de récurrence suivante : 

𝐬𝐤 =  ∑𝐚𝐢 𝐞(𝐤−𝐢) −  ∑𝐛𝐣 𝐬(𝐤−𝐣) 

𝐍

𝐣=𝟏

 

𝐍

𝐢=𝟎

 

Avec : 

o 𝐞(𝐤−𝐢) : l'échantillon de l'entrée au moment 𝐤.𝐓𝐞, fourni par le CNA (échantillonnes générés par le CAN)   

o 𝐬(𝐤−𝐣)  : l'échantillon de la sortie au moment 𝐤.𝐓𝐞. 

o 𝒂𝒊 , 𝒃𝒋 : coefficients à déterminer pour le filtre à concevoir.  

Il existe deux grandes familles de filtres numériques : les filtres non récursifs (RIF) et les filtres récursifs (IIR). 

R1	

R2	

C	

e(t) s(t) 
+ 

– 

Filtre analogique  

 

• FAR : Filtre anti-repliement de spectre  
• E / B : échantillonneur bloqueur  
• CAN : Convertisseur analogique numérique  
• CNA : Convertisseur numérique analogique 
• Le bloc suivant le CNA est un filtre passe-bas destiné à 

transformer le signal Sc(t) en un signal purement continu. 

Filtre 
numérique 

 
(Équation de 
récurrence)  

FAR 
ef (t) e (t) 

E / B 
eb (t) 

CAN 
ek  

CNA 
sc(t)  

s (t) sk  

Filtre numérique 

Conversion 
(Transposition) 

ef (t) 

t 

eb (t) 

t 

Bloqueur 

Échantillons ns  
Te 

sc (t) 

t 

11...10 
10...01 
01...11 
01...01 
01...00 
00...10 

ek  

k 

Échantillons ek  

Te 

sk  

11...10 
10...01 
01...11 
01...01 
01...00 
00...10 k 

Échantillons sk 

Te 

s (t) 

t 

Signal analogique d’entrée  Signal analogique de sortie  
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3.1. Filtre non récursif RIF 

      Dans les filtres non récursifs, les coefficients bk  sont nuls. La sortie à l'instant k . Te  dépend 

uniquement des valeurs connues des échantillons d'entrée :  𝐬𝐤 =  ∑ 𝐚𝐢 𝐞(𝐤−𝐢) 𝐍
𝐢=𝟎   

Ces filtres, appelés filtres à réponse impulsionnelle finie (RIF), sont toujours stables. 

 

3.2. Filtre récursif IIR 

     Dans les filtres récursifs, la sortie à l'instant k. Te dépend à la fois des échantillons d'entrée et 

des échantillons des sorties précédentes :  𝐬𝐤 =  ∑ 𝐚𝐢 𝐞(𝐤−𝐢) −  ∑ 𝐛𝐣 𝐬(𝐤−𝐣) 𝐍
𝐣=𝟏  𝐍

𝐢=𝟎   

     Ces filtres, appelés filtres à réponse impulsionnelle infinie (IIR), sont plus simples à calculer, 

mais peuvent présenter des risques d'instabilité. 

 

Dans ce chapitre, nous nous concentrerons exclusivement sur les filtres récursifs IIR. La conception et la mise en œuvre 

de ces filtres suivront la méthodologie suivante : 

 Modélisation du filtre numérique par transposition des filtres analogiques en numérique ; 

 Synthèse des filtres numériques basée sur une équation de récurrence ; 

 Réalisation des filtres numériques à l'aide d'un algorithme ou de composants électroniques numériques. 

 

 

V. Synthèse des filtres IIR  

1. Présentation  

   Ce type de filtre est beaucoup plus simple à calculer. Il s'agit de transposer des filtres analogiques en filtres numériques, 

en utilisant certaines méthodes de conversion que nous détaillerons par la suite. Toutefois, l'instabilité devient un problème 

majeur à mesure que l'ordre n du filtre augmente. 

Remarque : Pour simplifier l'étude, nous nous appuierons sur un filtre passe-bas analogique de premier ordre, auquel nous 

appliquerons les traitements nécessaires pour obtenir l'équation de récurrence finale. 

2. Transposition des filtres numériques 

    Il existe plusieurs méthodes d'approximation, chacune avec ses propres avantages et inconvénients en termes de 

précision, d'efficacité et de mise en œuvre. Le choix de l'une de ces méthodes peut affecter la validité des résultats en ce qui

concerne la performance. Dans ce cours, nous nous limiterons à l'approximation par la méthode d’Euler explicite. 

 Méthode d'Euler explicite (également appelée parfois méthode des rectangles) 

    Si l'intervalle t2 − t1 est suffisamment petit, on peut estimer l'intégrale d'une fonction entre 

t1 et t2 en utilisant l'aire d'un rectangle. 

∫ f(t) dt =
t2

t1

 (t2  −  t1 ).f(t2)          
      
⇔           

df(t)

dt
=

f(t2)− f(t1)

t2  −  t1
 

 
 

      En numérisation, f(t) représente (par exemple) le signal d'entrée e(t), f(t2) correspond à l'échantillon actuel 𝑒𝑘, f(t1) 

représente l'échantillon précédent 𝑒𝑘−1, et t2 − t1 est le temps d'échantillonnage Te, qui doit respecter la condition de 

Shannon, à savoir Fe > 2. F𝑀  est la fréquence maximale du signal à échantillonner. Ainsi, pour la dérivée 𝑑 𝑥(𝑡)

𝑑𝑡 
, on a 

l'approximation discrète :  

 La drivée : 𝑑 𝑥(𝑡)

𝑑𝑡 
 ≈  

   𝑥(𝑘)  −   𝑥(𝑘−1)   

𝑇𝑒
   

 Une grandeur : 𝑥(𝑡) ≈ 𝑥𝑘 

 

 

RIF  
𝐞𝐤   𝐬𝐤  

IIR  
𝐞𝐤   𝐬𝐤  

𝐭 

f (t)  

f (t2)  

f (t1)  

t1  t2  
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3. Équation de récurrence d'un filtre passe-bas récursif du premier ordre (IIR) 

    Dans un premier temps, en partant d'un filtre passe-bas passif de premier ordre, notre objectif est de déterminer la 

fonction de transfert, puis d'établir une équation différentielle. Ensuite, en appliquant la méthode de transposition décrite 

précédemment, nous aboutirons finalement à l'équation de récurrence. 

 

3.1. Fonction de transfert du filtre analogique  

Le schéma ci-dessous illustre un filtre passe-bas analogique de premier ordre : 

o Question 1 : exprimer la fonction de transfert et la mettre sous la forme canonique : H(jω) =
K

  1  +  τ jω
   

 Expression de  S en fonction de E, R et C : ……………………………………………………. 

……………………………………………………….……………………………………………… 

 La fonction de transfert H(jω) = 
  S(jω)   

E(jω)
 :……………………………….............…………… 

 La constante de temps 𝜏 : …………………………… 

3.2. Equation différentielle du filtre  

       En approximant l'expression suivante et en négligeant toutes les conditions initiales, on obtient : jω  X ≈  
𝐝 𝐱(𝐭)

𝐝𝐭 
, Cela

montre que dans le domaine fréquentiel, la multiplication par j ω est équivalente à la dérivation dans le domaine temporel. 

 

o Question 2 : En utilisant cette approximation, exprimez l'équation différentielle sous la forme suivante : 

 T 
d s(t)

dt
 +   s(t) = k e(t), que vaut les expressions de T et k ?  

……………………………………………………….…………    ……………………………………………………………………………. 

……………………………………………………….…………    ……………………………………………………………………………. 

3.3. Equation de récurrence du filtre passe-bas premier ordre   

       Cette étape consiste à convertir le filtre analogique en filtre numérique en appliquant l'approximation de la méthode 

d'Euler explicite, comme mentionné précédemment, à l'équation différentielle trouvée. 

o Question 3 : En appliquant l'approximation d'Euler explicite, démontrer que l'équation de récurrence du filtre peut 

être exprimée sous la forme suivante :   𝐬(𝐤)  =   𝐚𝟎 .𝐞(𝐤)   +   𝐛𝟏 . 𝐬(𝐤−𝟏).  

Identifier les coefficients du filtre  𝒂𝟎 et 𝒃𝟏 en fonction de T, Te et K. 

……………………………………………………….…………    ……………………………………………………………………………. 

……………………………………………………….…………    ……………………………………………………………………………. 

……………………………………………………….…………    ……………………………………………………………………………. 

……………………………………………………….…………    ……………………………………………………………………………. 

……………………………………………………….…………    ……………………………………………………………………………. 

3.4. Réalisation du filtre passe-bas premier ordre   

 

 

 

 

  

 

 

 

Blocs fonctionnels utilisés Algorithme : (Nom : filtre numérique passe bas) 
Variables :  

a0, b1, sn, sn1, en : réelles   
a0 = 0.25,  b1 = 0.5 ;  

 
E en entrée ; 
S en sortie ; 

 
Début :  

       Lire l’entrée :   𝐞𝐧 <=  𝐄 ;  
       Calculer :  

       𝐬𝐧 <= (𝐚𝟎 ∗ 𝐞𝐧) + (𝐛𝟏 ∗ 𝐬𝐧𝟏) ;  
 

        Ecrire à la sortie : 𝐒 <=  𝐬𝐧 ; 
     Sauvegarder :   
         𝐬𝐧𝟏 = 𝐬𝐧 ; 
      
     Attendre la fin de Te ; 
 
Aller au début.  

e(t)  s(t)  

R  

C  

Multiplieur  

   ∑    
Sommateur  

Te  

Retard d’une Période Te 

   ∑   

Te  

b1  

a0  

Filtre passe-bas de premier ordre  

  𝐞(𝐤)   

  𝐬(𝐤)   

  𝐅𝐞   

Horloge 

  𝐬(𝐤−𝟏)  
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4. Équation de récurrence d'un filtre passe-bas récursif du deuxième ordre (IIR) 

4.1. Fonction de transfert du filtre analogique  

   Le schéma ci-dessous illustre un filtre passe-bas analogique de deuxième ordre et sa fonction de transfert canonique 

s’écrit : 

H(jω) =
  S(jω)  

E(jω)
=

K

1 + 2 m j
ω

ω0
 +  (j

ω

 ω0
)

2
  
  

 

    En appliquant le théorème de MILMAN au point A, puis en utilisant le 

diviseur de tension à la sortie, comme expliqué dans le chapitre 20, nous 

avons obtenu la fonction de transfert suivante :    

H(jω) =
1 

1 + 3  j.R.C.ω+  (j.R.C.ω)2  
        Avec :   K = 1,  m = 1,5   et   ωo =  

1

  R .  C  
 

  

4.2. Equation différentielle du filtre  

       En approximant l'expression suivante et en négligeant toutes les conditions initiales, on obtient : jω  X ≈  
𝐝 𝐱(𝐭)

𝐝𝐭 
, Cela

montre que dans le domaine fréquentiel, la multiplication par j ω est équivalente à la dérivation dans le domaine temporel. 

     Après tous les calculs effectués, nous obtenons : 1
ωO

2

   d2 s(t)  

dt2  +
2 m

ωO

   d s(t)  

d t
 +  s(t)  =  K . e(t) 

 

4.3. Equation de récurrence du filtre passe-bas deuxième ordre   

       L'algorithme du filtre numérique (équation de récurrence) sera obtenu sans utiliser la transformée en Z (non abordée 

en CPGE), mais par discrétisation de l'équation différentielle du filtre. Les calculs, réalisés via la méthode d’Eluer 

explicite, sont complexes et aboutissent aux résultats suivants :   𝐬(𝐤)  =   𝐚𝟎 . 𝐞(𝐤)   +   𝐛𝟏 . 𝐬(𝐤−𝟏) +  𝐛𝟐 . 𝐬(𝐤−𝟐). 

 

 La dérivée seconde : 𝑑
2 𝑥(𝑡)

𝑑𝑡2 
 ≈  

   𝑥(𝑘)  −   2 𝑥(𝑘−1)  +     𝑥(𝑘−2)  

𝑇𝑒2    

 La drivée première : 𝑑 𝑥(𝑡)

𝑑𝑡 
 ≈  

   𝑥(𝑘)  −   𝑥(𝑘−1)   

𝑇𝑒
   

 Une grandeur : 𝑥(𝑡) ≈ 𝑥𝑘 

 

Les coefficients du filtre passe-bas de deuxième ordre obtenus sont présentés dans le tableau ci-dessous : 

 a0 =
ω0

2 .Te2.  K

 1 +  2.m.ωo.Te  +  ω0
2 .Te2 

   b1 =
2 +  2.m.ωo.Te

1 +  2.m.ωo.Te  +  ω0
2 .Te2  

   b2 = −
1

1 +  2.m.ωo.Te  +  ω0
2 .Te2  

  

 

Remarque : Pour les filtres d'ordre deux ou plus, il est préférable d'utiliser la transformée en Z au lieu de passage par la 

transposition par des équation différentielle, car elle simplifie les calculs complexes et lourds, rendant le processus plus 

efficace. 

 

4.4. Réalisation du filtre passe-bas deuxième ordre   

 

 

 

 

  

 

 

 

 

e(t)  sa(t) 

R  

C  

A 

M 

s(t) 

R  

C  

Algorithme : (Nom : filtre numérique passe bas) 
Variables :  

a0, b1, b2,  sn, sn1, sn2, en : réelles   
a0 = 0.25,  b1 = 0.5 ,  b1 = 0.05 ;  

 
E en entrée ;  
S en sortie ; 

 
Début :  

       Lire l’entrée :   𝐞𝐧 <=  𝐄 ;  
       Calculer :  

       𝐬𝐧 <= (𝐚𝟎 ∗ 𝐞𝐧) + (𝐛𝟏 ∗ 𝐬𝐧𝟏)− (𝐛𝟐 ∗ 𝐬𝐧𝟐)  ;  
 

        Ecrire à la sortie : 𝐒 <=  𝐬𝐧 ; 
     Sauvegarder :   
         𝐬𝐧𝟐 = 𝐬𝐧𝟏 ; 
         𝐬𝐧𝟏 = 𝐬𝐧 ; 
      
     Attendre la fin de Te ; 
 
Aller au début.  

 

   ∑    

Te  Te  

b1  

a0  

b2  

  𝐞(𝐤)   

  𝐬(𝐤)   

  𝐅𝐞   

Horloge 

  𝐬(𝐤−𝟏)     𝐬(𝐤−𝟐)   

Filtre passe bas de deuxième ordre  


