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Chapitre 1 : Stabilité des systémes asservis

I. Introduction

La stabilité constitue un critere fondamental dans 'analyse des systémes asservis.
Elle désigne la capacité du systéme a réagir de maniére controlée a toute perturbation
ou commande, garantissant une sortie bornée pour une entrée bornée. Un systéme
instable peut entrainer des réponses divergentes, rendant son comportement

imprévisible et inadéquat pour un fonctionnement fiable.

La stabilité peut étre définie simplement comme la capacité d'un systéme a

produire une sortie bornée lorsque l'entrée est bornée.
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Il. Analyse de la Fonction de Transfert en Boucle Fermée (FTBF)

L’analyse de la stabilité d’'un systeme asservi peut se faire en étudiant les poles de sa fonction de transfert en boucle fermée

(FTBF). La position de ces poles permet de déterminer si le systeme est stable ou non.

1. Les poles d’un systéme en boucle fermée

Considérons le schéma fonctionnel d’'un systéme de commande en boucle fermée. La E(p) HiE) S(p)
fonction de transfert en boucle fermée, notée F(p), s’exprime comme suit : P
M » F(P :_‘.I_(_P.)_-—- e e . FTB2. . K. H(P) K(p)
AL+ Fpolr)
d o= 2 (F(P. - WP E(p) Sp)

A 4 w(D.HG) —

On peut également exprimer la fonction de transfert en boucle fermée sous la forme suivante : F(p) =

D(p)
D(P) = XA FTBO

Ou D(p) représente le dénominateur de la fonction de transfert.
Les poles de F(p) sont les valeurs de p qui annulent D(p), soit: p=a+jb

ou a = Re(p) est la partie réelle du pdle, et b = Im(p) sa partie imaginaire.
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Application au systéme 1¢r et 2¢me ordre

Systéme premier ordre

Systéme second ordre (m < 1 et @ > 0)

Fonction de transfert

F(p) =

1,
p
wn wn?

Pobles du systéme

1+ Tp
N+T=-

s QD

{ pl=-mwn — jony1— m?

p2=-mwn + jony1-— m?

Partie réelle des péles

SXAN3

RGa) = R(f) == - Wa |

2. Critéres de stabilité d’un systéme en boucle fermée : analyse des poéles

La stabilité d'un systéme, quel que soit son ordre, peut étre évaluée en analysant la position de ses pdles, selon le critere

suivant :

Un systeme linéaire est stable si, et seulement si, tous les pdles de sa fonction de transfert possédent une partie réelle

strictement négative, c’est-a-dire: Re (p) < 0.

Pour mieux illustrer cette notion, examinons en détail les deux exemples suivants :

Exemple 1 : ordre 2 Exemple 2 : ordre 4 Position des poles(x) et des zéros (0)
Fonction de __6(p+3) _ 3 A Im(p)
transfert Fp) (P+2)(p+4) F(p) (P-1?(P*+ p+1) Ex1
* {Ea—os e *> Palw hot. B Re(p)
, , Pt3=2 = 1--3 ° ‘ W
Péles et Zéros . +hoA shife
~
(solutions de *=?°=€-‘—3- T
numérateur) (r+D(rP4+Y)=2 +h=--0C+0.37) 2 A Im(p) _
Pam- t 'P.‘:—DS'.-O.?‘:) 0
Py - :: ALY, Re(p)
Systéme stable Syf\'emc s VFable 37;\'5»-\& + V\M‘NL(‘ O W'S\" J& \ “
ou instable wrn R(A) 2, R lr R AP)Y O Ty

3. Allure de la réponse transitoire en fonction de la position des podles

I1 est souvent utile de connaitre le comportement transitoire d’'un systéme. Pour cela, on peut se référer au graphique suivant,

qui relie la position des poles a la forme de la réponse (cas d’un systéme de deuxiéme ordres) :
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Conclusion :

La regle de stabilité basée sur la position des pdles permet de vérifier si un systéme est stable ou non, mais elle ne suffit

pas a décrire précisément le comportement dynamique du systéme. En effet, un systéme peut présenter des oscillations

importantes tout en restant stable.

Cependant, 'analyse par les péles devient inapplicable lorsque la fonction de transfert n’est pas accessible. Dans ce cas,

d'autres méthodes doivent étre envisagées.

11l. Analyse de la Fonction de Transfert en Boucle Ouverte (FTBO)

1. Point critique

On considére le schéma bloc d’'un systeme asservi illustré dans la figure ci-apreés :

H(p) E(p) S(p)
FTBF(p) = —————— H(p)
® =1 ke Hp)
2 La stabilité du systeme dépend alors du signe de la partie réelle des racines K(p)
de l'équation caractéristique: 1+ K(p).H(p) =0 S .
: b Im

2 Ces racines peuvent étre exprimées sous la forme p = a + j b. Ainsi, |
| Point critique

% Re
1 o
o0

i
|

I’équation devient : i

|

i -

i FTBO (jwc) A lq)'

i

i

i

i

K(jw).H(jw) =—1 = FTBO(jw) = —1

Le point « =1 » sur le diagramme de Bode de la fonction de transfert en boucle @ FTBO’
La limite de

I'instabilité Systeme
purement stable

ouverte (FTBO) correspond & un gain unitaire (|[FTBO(jw)| = 1) et un déphasage

de —180°. Ce point est appelé point critique car il joue un rdle central dans

Panalyse de la stabilité selon le critére de Nyquist.

2. Critere de stabilité

. , . . A GFTBO
Le systeme sera stable en boucle fermée si la pulsation r |
critique ¢ vérifie la condition suivante : ————————
Arg(FTBO(jw,)) = —180° ~ . .°
S
AN »
A cette pulsation critique, si la courbe de gain de la FTBO T \‘
< .
passe en dessous du niveau 0 dB, cela signifie que : . Jystéme 1
A \\Systéme 2

|FTBO(](1)C)| <1 = GFTBO(iwC) <0

Arg(FTBO) Systéme 3

Autrement dit, pour garantir la stabilité, le gain de la

FTBO a la pulsation ou la phase atteint —-180° doit étre

inférieur a 0 dB.

S180° | B P :

A partir des trois systéemes, on conclut que :

Stable — Instable — Limite de I'instabilité
Systéme 1 G7° — S)(s’"(’;"-& el I\MS&Q‘:Q
Systéme 2 G0 —» %Sl‘?/:nc o Qq C\m‘c le 'Q’\IN\S\'@\AQ;\Q’
Systéme 3 Glo —b Syshime ot shfe
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Cas particulier :

Il est important de noter que la phase minimale d'un systéme du premier ordre est limitée a ¢ = — 90°, tandis que celle d’'un
systeme du second ordre peut atteindre =—180°. Ainsi, selon le critere de stabilité, on peut tirer une premiére conclusion :
un systeme du premier ordre ne peut jamais atteindre le point critique —1 en boucle ouverte, ce qui le rend

intrinsequement stable en boucle fermée.
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3. Les marges de stabilité 4 Srmso
Lorsqu’un systéme fonctionne a la limite de la stabilité, méme de
légéres variations de ses parameétres « par exemple dues a des
fluctuations de température» peuvent le faire basculer vers N 01
‘\ 0 ; w
Pinstabilité. A
, , TN . . .. L 9= o 7 MG
Pour évaluer la marge de sécurité vis-a-vis du point critique (—1), eG g_"(’)” 5 Marge de Gain
on utilise les courbes de gain et de phase de la fonction de transfert = |FTBO| =1
en boucle ouverte (FTBO). A Arg(FTBO)
Ces courbes permettent dappliquer deux critéres N &% > o
complémentaires : la marge de gain et la marge de phase, qui ]
quantifient respectivement 1'écart en gain ou en phase avant
d'atteindre linstabilité. ( MP
—180 Marge de Phase

Marge de gain MG
C’est la distance en dB du point critique (- 180° ; 0 dB) au point d’intersection du diagramme de Bode avec la droite ¢ =— 180°.

On note w¢ la pulsation (critique) pour laquelle: Arg [ FTBO(j w¢) | = — 180°.

MG = 0 — 20 log;,(| FTBO(j w()|)

wc / Arg [FTBO(j w¢) ] = —180°

Marge de phase MP
C’est la distance en degrés du point critique (- 180° ; 0 dB) au point d’intersection du diagramme de Bode avec la droite G =0

dB. On note w la pulsation (au "gain" unité «1 ») pour laquelle : | FTBO(j w;) | = 1 (0 dB).
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MP = Arg[FTBO(j ;) | - (—180)

w; / |[FTBO(jwy) =1

Afin de mieux comprendre les concepts de stabilité, examinons les trois cas suivants.

A GrrBo

[Cas1]

v

A Arg(FTBO)

180°)

A Grreo

|Cas2|

o< | ™

A Arg(FTBO)

sy s¥ewme shlle

Sy Fome ims bl

A GrrBo

[Cas 3]

A Arg(FTBO)

180°

Systeme oscillant

Une marge de gain ou de phase positive maintient la stabilité d'un systéeme, préservant son équilibre.

Dans ce troisiéme cas, il apparait clairement que garantir des marges de gain et de phase suffisantes est essentiel pour

renforcer la robustesse du systeme. En effet, de 1égeres variations des parameétres peuvent suffire a provoquer I'instabilité.

En pratique, on recommande généralement :

o Une marge de gain comprise entre 10 dB et 15 dB,

o Une marge de phase située entre 40° et 45°.

Ces valeurs offrent un bon compromis entre performance dynamique et sécurité vis-a-vis des incertitudes du modéle ou des

perturbations extérieures.

Cas particuliers

o Les systemes du premier et du deuxiéme ordre, lorsqu’ils sont mis en boucle fermée et exprimés sous leurs formes

standards, restent intrinséquement stables. En effet, leur fonction de transfert en boucle ouverte n’atteint jamais un

déphasage de —180°, ce qui les empéche d’atteindre le point critique et donc de devenir instables.

Systéme 1¢* ordre

Systéme 2¢me ordre

Marge de gain

HG - 4+ o0

H@——o‘\oo

Marge de phase

hep-

Mtero

o Lorsqu’un intégrateur est présent dans la boucle ouverte, il introduit un déphasage de —90°, ce qui rapproche la courbe de

phase du point critique (—1800,0 dB) et augmente ainsi le risque d’'instabilité.

En effet, si la boucle ouverte comporte déja une fonction intégration, ajouter un intégrateur supplémentaire (de type %)

« souvent pour améliorer la précision en régime permanent » modifie davantage la phase de la FTBO. Ce phénoméne

et ses implications seront développés plus en détail dans la prochaine lecon dédiée a l'intégration dans les systémes

asservis.
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E(p) H( ) y B |, 1 S(p) R La phase :
PI=5 p i’ ¢o(jw) = Arg [ﬁ]+Arg[K.H(jw)]
K < = ¢p(jw) =-180+ Arg[KHGw) ] < —-180

¥

Systéeme devient instable !!!!

Exemple de calcul :

On considére le schéma bloc suivante :

E(p) S(p)
Clp) P H® >

o Données: C(p) = % et H(p) =

avec K=2ett= 05s

1+ tp
o Cahier de charge : Marge de phase MP =40 °

Questions :

o Question 1 : Le systéme est-il stable ?

o Question 2 : Déterminer la fonction de transfert en boucle ouverte complexe HBO(jw), puis en déduire son module et sa

phase.

o Question 3 : Calculer la valeur du gain Kp du correcteur C(p) permettant de satisfaire I'exigence d'une marge de phase

(MP) de 45°, puis en déduire la marge de gain (MG) correspondante.

Réponse :

o Question 1 : la stabilité du systéme

Commencons par déterminer la fonction de transfert en boucle ouverte : Hbo(p) = % X 7 +K’[p
o  Cette fonction de transfert posséde deux péles : P1 = 0 et P2 = —% , ce qui indique une instabilité en

boucle ouverte.
e La fonction de transfert en boucle fermée sera d’ordre deux.

Le systéme pourra étre rendu stable en choisissant un réglage approprié du gain du correcteur Kp.

o Question 2 : la fonction de transfert complexe : Module et phase

: =5 _K : : ) .. KK,

On a : Hbo(p) = S X T o remplace p par jo ce qui donne : HBO(jw) = T
e Le module |[HBO(jw)| : IHBO(jw)| = _ KK
J ’ J - w1 + (tw)?

e Laphase ¢(HBO(jw)): ¢(HBO(jw)) = —90 — arctg(t. w)
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o Question 3 : la valeur du gain Kp pour avoir une marge de phase MP = 40°
MP = Arg[HBO(j w;) ]+ 180

Par définition :
w; / |[FTBO(jw,) | =1

— On détermine tout d’abord la pulsation unitaire 1 a laquelle sera évaluée la marge de phase correspondante.
Ona:MP = Arg[HBO(jw,) ]+ 180 = 40
— —90 —arctg(t.w;) +180 = 40
— —arctg(t.w,) + 90 = 40
— —arctg(t.wq) = —50
— arctg(t.wy) = 50
Dou: w;= @ AN :w; = 2.38rad/s

— on calcul maintenant le gain Kp a la pulsation unitaire :

. . _ K.Kp _ w11+ el)?
Onapourw; : | HBO(jwy) |= 1 =>—m1m_ = Kp= ————

Ainsi, le gain Kp qui permet de garantir une marge de phase MP =40°: K, =1.85

o La marge de gain MG

D’aprés 'analyse, la phase ne parvient jamais a atteindre la valeur critique de —180°, ce qui implique que la marge

de gain est infinie : MG = + .
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