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 Chapitre 1 : Stabilité des systèmes asservis       

 

I. Introduction  

    La stabilité constitue un critère fondamental dans l’analyse des systèmes asservis. 

Elle désigne la capacité du système à réagir de manière contrôlée à toute perturbation 

ou commande, garantissant une sortie bornée pour une entrée bornée. Un système 

instable peut entraîner des réponses divergentes, rendant son comportement 

imprévisible et inadéquat pour un fonctionnement fiable.       

    La stabilité peut être définie simplement comme la capacité d'un système à 

produire une sortie bornée lorsque l'entrée est bornée.  

 

 

 

 

     Deux approches d'étude sont envisageables, selon que l'on 

analyse la Fonction de Transfert en Boucle Fermée (FTBF) du 

système ou la Fonction de Transfert en Boucle Ouverte (FTBO). 

 

 

II. Analyse de la Fonction de Transfert en Boucle Fermée (FTBF) 

   L’analyse de la stabilité d’un système asservi peut se faire en étudiant les pôles de sa fonction de transfert en boucle fermée 

(FTBF). La position de ces pôles permet de déterminer si le système est stable ou non. 

1. Les pôles d’un système en boucle fermée 

Considérons le schéma fonctionnel d’un système de commande en boucle fermée. La 

fonction de transfert en boucle fermée, notée F(p), s’exprime comme suit : 

………………………………………………………………………………………………… 

………………………………………………………………………………………………… 

………………………………………………………………………………………………… 

 

On peut également exprimer la fonction de transfert en boucle fermée sous la forme suivante : 𝐅𝐅(𝐩𝐩) =
  𝐍𝐍(𝐩𝐩)  

𝐃𝐃(𝐩𝐩)
  

Où D(p) représente le dénominateur de la fonction de transfert. 

Les pôles de F(p) sont les valeurs de p qui annulent D(p), soit : p = a + j b    

où  𝒂𝒂 = 𝕽𝕽𝕽𝕽(𝒑𝒑) est la partie réelle du pôle, et  𝐛𝐛 = 𝕴𝕴𝕴𝕴(p) sa partie imaginaire.  
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Un système linéaire est stable si, et seulement si, tous les pôles de sa fonction de transfert possèdent une partie réelle 

strictement négative, c’est-à-dire :   𝕽𝕽𝕽𝕽 (𝒑𝒑) < 𝟎𝟎. 

Im(p) 

✅ Application au système 1er et 2ème ordre

2. Critères de stabilité d’un système en boucle fermée : analyse des pôles

La stabilité d’un système, quel que soit son ordre, peut être évaluée en analysant la position de ses pôles, selon le critère

suivant :

Pour mieux illustrer cette notion, examinons en détail les deux exemples suivants : 

3. Allure de la réponse transitoire en fonction de la position des pôles

Il est souvent utile de connaître le comportement transitoire d’un système. Pour cela, on peut se référer au graphique suivant,

qui relie la position des pôles à la forme de la réponse (cas d’un système de deuxième ordres) : 

Système premier ordre Système second ordre (𝐦𝐦 < 𝟏𝟏 et 𝛚𝛚 > 𝟎𝟎) 

Fonction de transfert 𝐅𝐅(𝐩𝐩) =
𝐊𝐊

𝟏𝟏 +  𝛕𝛕  𝐩𝐩 
𝐅𝐅(𝐩𝐩) =

𝐊𝐊

𝟏𝟏 +   
𝟐𝟐𝐦𝐦
𝛚𝛚𝛚𝛚

 𝐩𝐩  +   
𝟏𝟏
𝛚𝛚𝛚𝛚𝟐𝟐

 𝐩𝐩𝟐𝟐

Pôles du système � 
p1 = −m ωn  −   jωn �1−  m2

p2 = −m ωn  +   jωn �1−  m2
 

Partie réelle des pôles 

Exemple 1 : ordre 2 Exemple 2 : ordre 4 Position des pôles(x) et des zéros (o) 

Fonction de 
transfert 

F(p) =
6( p +  3)

(p + 2) ( p + 4)  
F(p) =

3

(p − 1)2(p2 +  p + 1)  
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(solutions de 

numérateur) 

Système stable 
ou instable
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Conclusion : 

✅ La règle de stabilité basée sur la position des pôles permet de vérifier si un système est stable ou non, mais elle ne suffit 

pas à décrire précisément le comportement dynamique du système. En effet, un système peut présenter des oscillations 

importantes tout en restant stable.

✅ Cependant, l’analyse par les pôles devient inapplicable lorsque la fonction de transfert n’est pas accessible. Dans ce cas, 

d'autres méthodes doivent être envisagées. 

 

III. Analyse de la Fonction de Transfert en Boucle Ouverte (FTBO) 

1. Point critique  

   On considère le schéma bloc d’un système asservi illustré dans la figure ci-après : 

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅(𝐩𝐩) =
𝐇𝐇(𝐩𝐩)

𝟏𝟏 + 𝐊𝐊(𝐩𝐩) .  𝐇𝐇(𝐩𝐩)
 

 La stabilité du système dépend alors du signe de la partie réelle des racines

de l'équation caractéristique :    𝟏𝟏+ 𝐊𝐊(𝐩𝐩).𝐇𝐇(𝐩𝐩) = 𝟎𝟎  

 Ces racines peuvent être exprimées sous la forme p = a + j b. Ainsi, 

l’équation devient :      

𝐊𝐊(𝐣𝐣𝛚𝛚).𝐇𝐇(𝐣𝐣𝛚𝛚) = − 𝟏𝟏   ⇒   𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅(𝐣𝐣𝛚𝛚) = − 𝟏𝟏 

    Le point « −1 » sur le diagramme de Bode de la fonction de transfert en boucle 

ouverte (FTBO) correspond à un gain unitaire (|𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅(𝐣𝐣𝛚𝛚)| =  𝟏𝟏) et un déphasage 

de −𝟏𝟏𝟏𝟏𝟎𝟎°. Ce point est appelé point critique car il joue un rôle central dans 

l’analyse de la stabilité selon le critère de Nyquist. 

2. Critère de stabilité 

Le système sera stable en boucle fermée si la pulsation

critique ωc vérifie la condition suivante : 

𝐀𝐀𝐀𝐀𝐀𝐀�FTBO(𝐣𝐣𝛚𝛚𝐜𝐜)� = −𝟏𝟏𝟏𝟏𝟎𝟎° 

À cette pulsation critique, si la courbe de gain de la FTBO 

passe en dessous du niveau 0 dB, cela signifie que : 

|FTBO(𝐣𝐣𝛚𝛚𝐜𝐜)| < 𝟏𝟏 ⇒  𝐆𝐆FTBO(𝐣𝐣𝛚𝛚𝐜𝐜) < 𝟎𝟎 

Autrement dit, pour garantir la stabilité, le gain de la 

FTBO à la pulsation où la phase atteint –180° doit être 

inférieur à 0 dB. 

 

A partir des trois systèmes, on conclut que :  

 

 Stable – Instable – Limite de l’instabilité 

Système 1  

Système 2  

Système 3  

H(p) 

K(p) 

E(p) S(p)
+ 

- 
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Re 
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φ′ 
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purement stable    

 𝐆𝐆𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅  

𝐀𝐀𝐀𝐀𝐀𝐀(𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅)  

𝐆𝐆 < 𝟎𝟎 

- 𝟏𝟏𝟏𝟏𝟎𝟎° 
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Cas particulier : 

Il est important de noter que la phase minimale d’un système du premier ordre est limitée à φ = − 90°, tandis que celle d’un 

système du second ordre peut atteindre φ=−180°. Ainsi, selon le critère de stabilité, on peut tirer une première conclusion : 

un système du premier ordre ne peut jamais atteindre le point critique −1 en boucle ouverte, ce qui le rend 

intrinsèquement stable en boucle fermée. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Les marges de stabilité 

      Lorsqu’un système fonctionne à la limite de la stabilité, même de 

légères variations de ses paramètres « par exemple dues à des 

fluctuations de température » peuvent le faire basculer vers 

l’instabilité. 

      Pour évaluer la marge de sécurité vis-à-vis du point critique (−1), 

on utilise les courbes de gain et de phase de la fonction de transfert 

en boucle ouverte (FTBO). 

      Ces courbes permettent d’appliquer deux critères 

complémentaires : la marge de gain et la marge de phase, qui 

quantifient respectivement l'écart en gain ou en phase avant 

d'atteindre l’instabilité. 

 

✅ Marge de gain MG 

C’est la distance en dB du point critique (– 180° ; 0 dB) au point d’intersection du diagramme de Bode avec la droite ϕ = – 180°. 

On note ωC la pulsation (critique) pour laquelle ∶  𝐀𝐀𝐀𝐀𝐀𝐀 [ 𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅(𝐣𝐣 𝛚𝛚𝐂𝐂) ]  =  − 𝟏𝟏𝟏𝟏𝟎𝟎° . 

�
𝐌𝐌𝐆𝐆 =  𝟎𝟎 −  𝟐𝟐𝟎𝟎 𝐥𝐥𝐥𝐥𝐀𝐀𝟏𝟏𝟎𝟎(| 𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅(𝐣𝐣 𝛚𝛚𝐂𝐂)|)

 
𝛚𝛚𝐂𝐂  /  𝐀𝐀𝐀𝐀𝐀𝐀 [ 𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅(𝐣𝐣 𝛚𝛚𝐂𝐂)  ]  =  − 𝟏𝟏𝟏𝟏𝟎𝟎°

 

✅ Marge de phase MP 

C’est la distance en degrés du point critique (– 180° ; 0 dB) au point d’intersection du diagramme de Bode avec la droite G = 0 

dB. On note 𝛚𝛚𝟏𝟏 la pulsation (au "gain" unité «1 ») pour laquelle : | FTBO(j ω1)  | =  1 (0 𝑑𝑑𝑑𝑑).   

 

Système de 1er ordre  Système de 2ème ordre  
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𝐆𝐆𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅  

𝐀𝐀𝐀𝐀𝐀𝐀(𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅)  

−𝟏𝟏𝟏𝟏𝟎𝟎°

𝝎𝝎 

𝝎𝝎 𝝎𝝎𝒄𝒄

𝝎𝝎𝟏𝟏 

𝐌𝐌𝐆𝐆 

𝐌𝐌𝐌𝐌 

Marge de Gain  

 

Marge de Phase  

La phase : 
 𝝋𝝋 = −𝟏𝟏𝟏𝟏𝟎𝟎° 

Le gain : 
G= 𝟎𝟎  

⇒  |𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭| = 𝟏𝟏 
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Une marge de gain ou de phase positive maintient la stabilité d'un système, préservant son équilibre. 

� 
𝐌𝐌𝐌𝐌 =   𝐀𝐀𝐀𝐀𝐀𝐀 [ 𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅(𝐣𝐣 𝛚𝛚𝟏𝟏)  ]− (−𝟏𝟏𝟏𝟏𝟎𝟎)

 
𝛚𝛚𝟏𝟏  /  | 𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅(𝐣𝐣 𝛚𝛚𝟏𝟏)  | =  𝟏𝟏                         

   

Afin de mieux comprendre les concepts de stabilité, examinons les trois cas suivants. 

 

 

 

 

Dans ce troisième cas, il apparaît clairement que garantir des marges de gain et de phase suffisantes est essentiel pour 

renforcer la robustesse du système. En effet, de légères variations des paramètres peuvent suffire à provoquer l’instabilité. 

En pratique, on recommande généralement : 

o Une marge de gain comprise entre 10 dB et 15 dB, 

o Une marge de phase située entre 40° et 45°. 

Ces valeurs offrent un bon compromis entre performance dynamique et sécurité vis-à-vis des incertitudes du modèle ou des 

perturbations extérieures. 

 

Cas particuliers 

o Les systèmes du premier et du deuxième ordre, lorsqu’ils sont mis en boucle fermée et exprimés sous leurs formes 

standards, restent intrinsèquement stables. En effet, leur fonction de transfert en boucle ouverte n’atteint jamais un 

déphasage de −180°, ce qui les empêche d’atteindre le point critique et donc de devenir instables. 

 

 Système 1er ordre Système 2ème ordre 

Marge de gain    

Marge de phase    

 

o Lorsqu’un intégrateur est présent dans la boucle ouverte, il introduit un déphasage de −90°, ce qui rapproche la courbe de 

phase du point critique (−180∘,0 dB) et augmente ainsi le risque d’instabilité.  

En effet, si la boucle ouverte comporte déjà une fonction intégration, ajouter un intégrateur supplémentaire (de type 𝟏𝟏
  𝒑𝒑  

) 

« souvent pour améliorer la précision en régime permanent » modifie davantage la phase de la FTBO. Ce phénomène 

et ses implications seront développés plus en détail dans la prochaine leçon dédiée à l’intégration dans les systèmes 

asservis. 

 

𝐆𝐆𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅  

𝐀𝐀𝐀𝐀𝐀𝐀(𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅)  

𝟏𝟏𝟏𝟏𝟎𝟎° 

𝝎𝝎 

𝝎𝝎 

𝝎𝝎𝒄𝒄 𝝎𝝎𝟏𝟏 

𝐌𝐌𝐆𝐆 

𝐌𝐌𝐌𝐌 

 Cas 2  Cas 1  Cas 3 
𝐆𝐆𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅  

𝐀𝐀𝐀𝐀𝐀𝐀(𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅)  

𝟏𝟏𝟏𝟏𝟎𝟎° 

𝝎𝝎 

𝝎𝝎 

𝝎𝝎𝒄𝒄 

𝝎𝝎𝟏𝟏 
𝐌𝐌𝐆𝐆 

𝐌𝐌𝐌𝐌 

𝐆𝐆𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅  

𝐀𝐀𝐀𝐀𝐀𝐀(𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅)  

𝟏𝟏𝟏𝟏𝟎𝟎° 

𝝎𝝎 

𝝎𝝎 
𝝎𝝎𝒄𝒄 

𝝎𝝎𝟏𝟏 

Système oscillant  

MG = 0 MG > 0 

MP = 0   
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La phase : 

𝜑𝜑(𝑗𝑗𝑗𝑗) = 𝐀𝐀𝐀𝐀𝐀𝐀 �
𝟏𝟏

(𝒋𝒋𝝎𝝎)𝟐𝟐
 �+ Arg [ K. H(j ω )  ] 

⇒ 𝜑𝜑(𝑗𝑗𝑗𝑗) = −𝟏𝟏𝟏𝟏𝟎𝟎+ Arg [ K. H(j ω )  ] < −180   

 

 

 

Exemple de calcul :  

On considère le schéma bloc suivante :  

 

 

 

 

 

o Données : C(p) =  
Kp

 p 
  et H(p) =  

K

1  +  τ.p 
  avec K = 2 et τ =  0.5 s 

o Cahier de charge : Marge de phase MP = 40 °  

 

Questions :  

o  Question 1 : Le système est-il stable ? 

o  Question 2 : Déterminer la fonction de transfert en boucle ouverte complexe HBO(jω), puis en déduire son module et sa 

phase. 

o  Question 3 : Calculer la valeur du gain Kp du correcteur C(p) permettant de satisfaire l’exigence d’une marge de phase 

(MP) de 45°, puis en déduire la marge de gain (MG) correspondante. 

 

 

Réponse :  

o Question 1 : la stabilité du système  

Commençons par déterminer la fonction de transfert en boucle ouverte : 𝐇𝐇𝐛𝐛𝐥𝐥(𝐩𝐩) =
  𝐊𝐊𝐩𝐩 

 𝐩𝐩 
×  

𝐊𝐊

𝟏𝟏  +  𝛕𝛕.𝐩𝐩 
  

• Cette fonction de transfert possède deux pôles : 𝐌𝐌𝟏𝟏 =  𝟎𝟎 et  𝐌𝐌𝟐𝟐 =  −
𝟏𝟏 

 𝛕𝛕 
  , ce qui indique une instabilité en 

boucle ouverte. 

• La fonction de transfert en boucle fermée sera d’ordre deux. 

Le système pourra être rendu stable en choisissant un réglage approprié du gain du correcteur Kp. 

 

o Question 2 : la fonction de transfert complexe : Module et phase  

On a : Hbo(p) =
  Kp 

 p 
×

K

1  +  τ.p 
, on remplace p par jω ce qui donne : 𝐇𝐇𝐅𝐅𝐅𝐅(𝐣𝐣𝛚𝛚) =

𝐊𝐊 . 𝐊𝐊𝐩𝐩

𝐣𝐣𝛚𝛚(𝟏𝟏  +  𝛕𝛕.𝐣𝐣𝛚𝛚) 

• Le module |HBO(jω)| : |𝐇𝐇𝐅𝐅𝐅𝐅(𝐣𝐣𝛚𝛚)| =
𝐊𝐊 . 𝐊𝐊𝐩𝐩

𝛚𝛚 �𝟏𝟏  +  (𝛕𝛕.𝛚𝛚)𝟐𝟐 
   

• La phase 𝜑𝜑(HBO(jω)) :  𝝋𝝋(𝐇𝐇𝐅𝐅𝐅𝐅(𝐣𝐣𝛚𝛚)) =  − 𝟗𝟗𝟎𝟎 − 𝐚𝐚𝐀𝐀𝐜𝐜𝐚𝐚𝐀𝐀(𝛕𝛕.𝛚𝛚)   

 

 

𝐻𝐻(𝑝𝑝) ×
1

 𝑝𝑝 
   

K 

E(p) S(p) 
+ 

- 
1

𝑝𝑝   

Système devient instable !!!!  

𝐶𝐶(𝑝𝑝)   
E(p) S(p) 

+ 
- 

𝐻𝐻(𝑝𝑝)  
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o Question 3 : la valeur du gain Kp pour avoir une marge de phase MP = 40° 

 Par définition :   �   
𝐌𝐌𝐌𝐌 =   𝐀𝐀𝐀𝐀𝐀𝐀 [ 𝐇𝐇𝐅𝐅𝐅𝐅(𝐣𝐣 𝛚𝛚𝟏𝟏) ] + 𝟏𝟏𝟏𝟏𝟎𝟎

 
𝛚𝛚𝟏𝟏  / | 𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅(𝐣𝐣 𝛚𝛚𝟏𝟏)  | =  𝟏𝟏                         

   

 

→ On détermine tout d’abord la pulsation unitaire ω1 à laquelle sera évaluée la marge de phase correspondante. 

On a : 𝐌𝐌𝐌𝐌 =   𝐀𝐀𝐀𝐀𝐀𝐀 [ 𝐇𝐇𝐅𝐅𝐅𝐅(𝐣𝐣 𝛚𝛚𝟏𝟏)  ] + 𝟏𝟏𝟏𝟏𝟎𝟎 =  𝟒𝟒𝟎𝟎 

                 →  − 90 − arctg(τ.ω1)  + 180 =  40 

                 →  −arctg(τ.ω1)  +  90 =  40 

                 →  −arctg(τ.ω1)   =  − 50 

                 →    arctg(τ.ω1)   =  50 

    D’où :      𝛚𝛚𝟏𝟏 =
𝐚𝐚𝐀𝐀 (𝟓𝟓𝟎𝟎)

𝛕𝛕
     A.N : 𝛚𝛚𝟏𝟏 =  𝟐𝟐.𝟑𝟑𝟏𝟏 𝐀𝐀𝐚𝐚𝐫𝐫/𝐬𝐬 

→ on calcul maintenant le gain Kp à la pulsation unitaire :  

On a pour 𝛚𝛚𝟏𝟏 : | 𝐇𝐇𝐅𝐅𝐅𝐅(𝐣𝐣 𝛚𝛚𝟏𝟏)  | =  𝟏𝟏        ⟹  
K . Kp

ω1 �1  +  (τ.ω1)2 
=  1   ⟹   𝐊𝐊𝐩𝐩 =  

 𝛚𝛚𝟏𝟏 �𝟏𝟏  +  (𝛕𝛕.𝛚𝛚𝟏𝟏)𝟐𝟐

𝐊𝐊 
 

 Ainsi, le gain Kp qui permet de garantir une marge de phase MP = 40° :     𝐊𝐊𝐩𝐩 = 𝟏𝟏.𝟏𝟏𝟓𝟓               

 

o La marge de gain MG  

D’après l’analyse, la phase ne parvient jamais à atteindre la valeur critique de −180°, ce qui implique que la marge 

de gain est infinie : MG = + ∞. 
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